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pends on a high temperature equilibrium that can be studied
and predicted based on earth igneous rock.

In considering space manufacturing, an important criterion
should be the payout time on a weight basis. This is the
time required to produce a weight of product equal to the
weight of plant brought from earth. The weight of plant
necessary to produce 5 Ib/hr of oxygen, including a nuclear
power unit, is estimated to be in the order of 5 to 7 tons.
Thus, such a plant would pay for itself on a weight basis in
three or four months.
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A Nonlinear Lifting-Surface Theory
Especially for Low-Aspect-Ratio Wings

K. GERSTEN*

Institute of Fluid Mechanics of the Technical University,
Braunschweig j Germany

THIS note briefly summarizes a recently published1 lift-
ing-surface theory of wings with arbitrary planform in

incompressible flow including nonlinear effects. Wings of
small aspect ratio having sharp leading edges, as is well
known, give rise to nonlinear dependence of lift and pitching
moment on the angle of attack. This nonlinearity is due to
the characteristic feature of the flow past a low-aspect-ratio
wing, namely the strong cross flow causing the flow to separate
at the leading or side edges and thus leading to the formation
of free vortices on the upper surface of the wing.

All existing lifting-surface theories2""4 are linear theories,
which means that they can predict only a linear dependence
of lift and pitching moment on angle of attack, because a
given wing is replaced by a certain system of bound and free
vortices, all of which are distributed in one plane.

The simple vortex model of the classical linear wing
theory, namely one single vortex sheet, was modified in such
a way that, by taking into account the special feature of the
flow on low-aspect-ratio wings, a nonlinear dependence of lift
and pitching moment on angle of attack could be obtained.
The new vortex model used in this nonlinear theory is ex-
plained in Fig. 1. As in the linear theory of Truckenbrodt,2
the wing is substituted by a number of elementary wings of
infinitesimal span dy (Fig. la). Each of these elementary
wings has a chordwise vortex distribution. Consequently,
from each point over the chord length free vortices flow off
downstream which, according to the vortex model employed,
form an angle of a/2 with the wing plane (Fig. Ib). A vor-
tex model of this kind first was used by Bollay,5 but for an
entire single rectangular wing instead of the elementary

Fig. 1 Vortex model for nonlinear lifting-surface theory

wings. By this way the flowing off of free vortices at the
rear at an angle of a/2 is achieved at any point on the wing
where vortex intensity is changing. In the limiting case of
very small angles of attack (a ->• 0), the vortex model becomes
the usual model of the linear theory.

The problem is now to determine the. induced velocities
at the wing area in the vortex model thus defined and to
establish the flow conditions at the wing surface which then
yield the equation for the unknown vortex distribution. If
k(x,y) is the continuous distribution of vorticity over the
wing surface, the outlined vortex configuration gives the fol-
lowing equation for the induced angle of incidence on the
wing surface:

otioe = LI(&) + (a/1 a\)a L2(&) + . . . (1)

where terms in powers of a of higher than first order are
neglected. The linear operators Li(k) and L2(&) are deter-
mined by

4?r V

where R = [(x - x'Y + (y - 2/')2]1/2 and

T n^ l d f ** /i . x ~ x> \ ^L2(&) = - r= :r- I ( 1 + I ———— 77 ) X87 dy J %i \ \x — x'\J
(x - xf) k(x',y)dx' (3)

LI and Z/2 have the following properties:

L(cK) = cL(K)
L(k, + fe) = L(fo) + L(fe) (4)

xi, xt are the abscissas of leading edge and trailing edge,
respectively. The solution of Eq. (1) can be given in the
form

k = + kz(&/\ a\}a2 (5)
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Using the relations in Eq. (4), the following two equations
serve for the determination of the functions k\ and &2:

Equation (6) is identical with the integral equation of the
linear theory, which can be solved by one of the well-known
methods, e.g., Ref. 2. The nonlinear term is obtained
from Eq. (7), which differs from Eq. (6) only by the right-
hand side. Having determined ki from Eq. (6), it is easy
to establish the right-hand side of Eq. (7), which can be solved
by the same methods used in the linear theories. After
functions k\ and &2 have been determined, the aerodynamic
coefficients CL and CM can be obtained from the vorticity
distribution k(x,y) in the usual way.

By use of this method, the lift distributions and aero-
dynamic coefficients for series of rectangular wings, swept
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Fig. 2 Lift coefficient a) and pitching-moment coefficient
b) for a slender delta wing (aspect ratio AH = 0.78, taper

ratio X = 0.125) vs angle of attack
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Fig. 3 Lift coefficient a) and pitching-moment coefficient
b) for a swept wing (aspect ratio AR = 1, sweep angle <p =

45°) vs angle of attack

wings, and delta wings were calculated and, as far as pos-
sible, compared with measurements. The agreement is
quite satisfactory. In Figs. 2 and 3, comparisons between
theory and experiments are shown for a slender delta wing
and for a swept wing of 45° sweep angle and taper ratio
1. For the lift coefficients as well as for the pitching-moment
coefficients, the agreement is very good up to high values
of angle of attack. For the drag coefficient of wings having
sharp leading edges, one obtains CD = CL<X, since suction
forces are zero due to leading-edge separation.
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Cylindrical Heat Flow with Arbitrary
Heating Rates
J. E. PHYTHIAN*

Maker ere University College, Kampala, Uganda, Africa

IN this note, Chen's solution1 is extended to the problem of
purely radial heat flow through a hollow cylinder (a ^ r ^ b)

under an arbitrary time-dependent heat flux at the outer
surface (r = b) and zero heat flux at the internal boundary
(r = a). The solution should be useful in current aerospace
problems for stations of a missile body not influenced by nose
tapering. The missile's skin material is assumed to have
physical properties independent of temperature, so that the
temperature T(r,f) is a function of radius r and time t only.

The basic differential equation and boundary conditions
can be written in the form

1 bT = d2?7 1 dT
~a ~bt ~ ~dr* r dr

with

7Xr,0) = 0

for t = 0, a ^ r ^ 6, and

57X6,0k = Q(t)

(1)

(2)

(3)

where Q(t) is the heat flux at the external boundary. Using
the Laplace transform,

(4)r(r,p) = I e-p«!T(r,0^

these equations become

= -^ + - -^r (<V = p)5r2 r dr

= Q(p)

(5)

(6)

(7)

(8)

where 70, 7i, K0, ^i are modified Bessel functions of the first

with

and
fc[df(a,p)/dr] = 0

The operator form of the solution is

T(r,p) =
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